okx

[币界网]FHE:守护数据隐私

时间:2024-06-19|浏览:227

来源:IOBC Capital

在数字化时代,数据隐私的保护比以往任何时候都显得更加重要。随着大数据、云计算和物联网技术的飞速发展,个人信息的收集、存储和分析变得日益普遍。然而,这也带来了数据泄露和滥用的风险。

FHE即全同态加密(Fully Homomorphic Encryption),它允许在加密数据上直接进行计算,并且得到的计算结果与在原始数据上进行相同计算的结果一致。这意味着我们可以在不暴露原始数据的情况下,对数据进行处理和分析,它为保护数据隐私和完整性提供了一种新的解决方案。

FHE的理论基础可以追溯到1978年,Rivest等人提出了首个同态加密问题,直到2009年,Gentry在其博士论文中首次构造出可实现的全同态加密方案,FHE研究才真正开始蓬勃发展。早期的FHE方案计算效率极低,无法满足实际应用需求,随着研究人员不断提出优化方案,显著改善了FHE的性能,FHE的研究正朝着提高效率、降低计算复杂度和拓展应用场景的方向发展。

FHE的技术实现路径

基于理想格的FHE方案

这是目前公认最实用和高效的FHE构造方式,主要思路是利用环运算的代数结构,通过模运算和分解环的理想因子来完成加密和解密操作。代表性方案有BGV、BFV和CKKS等,这类方案的优点是运算效率较高,缺点是需要更大的密钥和密文空间。

基于矩阵的FHE方案

该方案将明文信息编码到矩阵中,通过矩阵运算实现同态性。代表方案有GSW和HiNC等,其特点是安全性很高,但效率较低。

基于NTRU的FHE方案

NTRU(Number Theory Research Unit)具有良好代数结构和循环对称性,可以构建高效的FHE方案,如YASHE和NTRU-FHE等,这类方案的优点是密钥和密文大小较小,适合资源受限环境。

基于学习含噪声算术电路(LWE/LWR)的FHE方案

利用在LWE/LWR难题基础上构造的加密方案,例如FHEW和TFHE等,这类方案更注重理论创新,可实现非常强的安全性,但实用性有限。

FHE vs. ZKP

FHE和ZKP都是加密技术,但它们几乎是互补的。

ZKP允许证明者向验证者证明一个信息是正确的,而无需透露具体细节,验证者无需重新执行计算,即可验证信息的正确性及计算完整性。虽然ZKP可以在不泄露信息的情况下证明正确性,但其输入通常为明文形式,这可能会导致隐私泄露。

FHE的引入可以解决这个问题,FHE能够在加密数据上执行任意计算,而无需解密,从而保护数据隐私。但FHE存在的问题是,无法确保计算的正确性和可靠性,这正是ZKP所解决的问题。

通过FHE+ZKP的技术组合,一方面FHE保护了输入数据和计算过程的隐私性,另一方面ZKP为FHE计算提供了正确性、合法性和可审计性的加密证明,最终实现真正安全可信的隐私计算,这对于敏感数据处理、多方合作计算等隐私保护应用场景都是非常有价值的。

ZAMA:FHE领航者

Zama是一家开源密码学公司,为区块链和AI构建最先进的FHE解决方案。主要拥有四种开源方案:

TFHE-rs 是一个 Rust 实现的 Torus 上的全同态加密,用于在加密数据上执行布尔和整数运算。TFHE-rs 库实现了 Zama 变体的 TFHE,它实现了所有所需的同态操作,如通过可编程自举(Programmable Bootstrapping)进行加法和函数评估。

Concrete 是一个开源的FHE框架,包含了一个 TFHE编译器作为框架的一部分,该编译器将常规编程代码转换为计算机可以使用 FHE 执行的可操作指令,使开发人员可以轻松编写 FHE 程序。对 FHE 加密数据进行计算可能会引入大量噪声,从而导致错误,Concrete 的默认错误概率非常低,开发人员可以灵活地修改此错误概率的参数。

Concrete ML 是基于Concrete构建的隐私保护机器学习(PPML)开源工具,开发者可以无需密码学知识,即可将FHE集成到机器学习模型中。

fhEVM 将FHE引入EVM生态,使开发人员可在链上执行加密的智能合约,保护链上数据隐私的前提下使智能合约仍然拥有可组合性。fhEVM在整合TFHE-rs的同时,引入新的TFHE Solidity库,允许开发人员使用Solidity对加密数据进行计算。

Fhenix:首个FHE-Rollup

Fhenix是第一个基于FHE的Layer2 Rollup,基于Zama的TFHE-rs构建了自己的加密计算库——fheOS,它包含常见加密操作码的预编译,使智能合约能够在链上使用FHE原语。fheOS 还负责 rollup 与 Threshold 服务网络 (TSN) 之间的通信和身份验证,以进行解密和重新加密请求,同时证明解密请求是合法的。fheOS 库旨在作为扩展注入到任何现有的 EVM 版本中,与 EVM 完全兼容。

Fhenix的共识机制采用了Arbitrum 的 Nitro 证明器。之所以选择欺诈的证明方式,是因为FHE和zkSNARK的底层结构不一样,采用ZKP的方式验证FHE计算量非常大,在当前技术阶段几乎不可能做到。

Fhenix还于近期与EigenLayer合作开发了FHE coprocessors,把FHE计算引入其他公链、L2、L3等。由于Fhenix采用欺诈证明,存在7天挑战期,EigenLayer的服务能够帮助协处理器实现快速交易确认,显著提升性能。

FHE守护数据隐私

Privasea推出了ImHuman应用,基于FHE开发了Proof of Human,旨在证明用户是人类,以保护其数字身份不受机器人和人工智能仿冒的威胁。用户可以通过面部生物识别技术验证其为真实人类,生成一个独特的 NFT,作为个人人类身份的证明。使用 ImHuman 应用,用户可以在不泄露个人详细信息的情况下,在 Web3 和 Web2 平台上安全地确认个人身份。

写在最后

在Defi领域,FHE使交易和资金流动能够在不泄露敏感财务信息的情况下进行,从而保护用户隐私并降低市场风险,也可能成为有效解决MEV问题的方式之一;在全链游戏中,FHE确保玩家的得分和游戏进度等数据在加密状态下得到保护,同时允许游戏逻辑在不暴露数据的前提下在链上运行,增强了游戏的公平性和安全性;在AI领域,FHE允许对加密数据进行分析和模型训练,这不仅保护了数据隐私,还促进了跨机构的数据共享和合作,推动了更安全、更合规的人工智能应用的发展。

FHE在实用性和效率上仍面临诸多挑战,但其独特理论基础为克服瓶颈带来希望。未来,FHE有望借助算法优化、硬件加速等途径,大幅提升性能,扩大应用场景,为数据隐私保护和安全计算提供更加坚实的基础。

热点:数据 币界

« 上一条| 下一条 »
区块链交流群
数藏交流群

合作伙伴

今日黄金 旅游资讯网 宠物丫 免费电影 百科书库 佩佩蛙官网 数字财经 玩合约 借春秋 趣开心资讯 美白没斑啦 币圈交流群 皮卡丘资讯 趣玩币 非小号行情 减肥瘦身吧 元宇宙Web 培训资讯网 去玩呗SPA 天天财富 周公解梦 币圈官网 兼职信息网 妈妈知道 谈股票 茶百科 起名取名网 聚币网 數字黃金 币爸爸 金色币圈 二手域名 百悦米 玩票票财经 借春秋财经 谷歌留痕 爱网站 币圈ICO官网 币圈论坛 宝宝起名 装修装饰网 代特币圈 黄金行情 秒懂域名
在区块链世界中,智能合约不仅是代码的信任,更是商业的革命。通过了解其在供应链、版权保护等领域的应用,您将真正体验到智能合约的无限可能性
区块链世界GxPiKaQiu.com ©2020-2024版权所有 桂ICP备16002597号-2