时间:2024-07-16|浏览:244
在当今金融交易日益数字化的时代,人工智能的作用必将扩大。人工智能将不可避免地与金融技术和服务融合,并以多种方式应用,而发薪日贷款公司将率先拥抱人工智能,它们已经凭借短期贷款的概念对社会产生了深远的影响。
读者可能会对发薪日贷款公司使用人工智能的想法感到震惊,这是可以理解的。毕竟,这两个行业的声誉都不太好。贷款公司使用人工智能难道不意味着人们会成为“目标”吗?这是否意味着他们试图剥削最脆弱的消费者?毕竟,他们是坏人,对吧?
虽然有些发薪日贷款机构确实以高利率剥削人们而闻名,使他们陷入借贷和债务的循环,但它们也为缺钱的人提供了必要且往往至关重要的服务。尽管人工智能最终可能会夺走一些人的工作,但不可否认的是,它在许多其他方面都是一件好事。例如,它有助于使知识民主化、鼓励创造力、提高人们的生产力、推动医学进步,甚至打击性交易,还有许多其他好处。
因此,当得知发薪日贷款公司实际上正在尝试利用人工智能做一些好事,使他们的服务更容易获得,特别是对于没有银行账户的人,并降低借贷成本时,我们不应该感到太惊讶。
人工智能可以改善信用评估
人工智能可以在多个领域对发薪日贷款产生积极影响。首先,它可以处理比传统数据分析模型多得多的数据,包括直接从某人的智能手机上抓取的信息。人工智能可以找到传统的基于信用评分的系统无法识别的信用模式,或者显示某人是否应该被拒绝,尽管其信用评分较高。此外,它可以节省大量成本,因为它可以自动化评估信用的过程,因此贷方无需向传统上做出决定的贷款人员支付薪水。因此,基于人工智能的贷款系统可以以较低的利率提供贷款,同时仍可带来更高的利润。
人工智能贷款领域的关键推动者之一是 NeurochainAI,它正在构建一个先进的、分散的人工智能即服务生态系统,帮助组织更容易地使用人工智能。
该公司的平台提供企业所需的一切,包括 AI 模型托管、集成工具、培训和社区验证的高质量数据。它专注于提供无缝体验,提供随时可用和预先训练的 AI 模型,可根据组织的特定需求快速定制。其创新成果之一是专门为改善信用评估而设计的 AI 模型。
Neurochain AI 声称,其信用模型使发薪日贷款机构能够做许多美国银行想做但做不到的事情。例如,其 AI 模型使客户能够在几秒钟内证明自己的身份,因此他们只需使用智能手机即可加入。然后,他们利用用户的智能手机本身获取数据,这些数据对于评估他们是否有信用至关重要。
通过这种方式,Neurochain AI 为发薪日贷款机构铺平了道路,使其能够安全地向没有信用记录的个人放贷,而且利率是传统银行无法比拟的。此外,这些发薪日贷款机构在这样做的同时还能获得可观的利润。
为什么AI比BI更好?
NeurochainAI 的信用风险评估模型基于一个引擎,该引擎会仔细分析每个客户的智能手机账单支付历史、银行账户历史(如果用户的设备上安装了银行应用程序)以及有关他们的账单支付、购买、地理位置等的信息。
传统放贷机构倾向于使用商业智能软件来做出决策。当他们使用 BI 软件时,这意味着要分析客户的银行记录和以前的交易、还款等。但是,当放贷机构使用 AI 软件时,他们不再需要回顾过去,而是可以展望未来,因为 AI 具有根据所见数据进行预测的独特能力。它可以根据每个客户与现有贷款客户的相似性来预测他们将会做什么。因此,申请人不需要信用记录即可通过 AI 信用评估。
要使用 NeurochainAI 的信用风险评估模型,发薪日贷款人只需将其与品牌移动应用程序集成即可,理想情况下是 Android,这是一个比 Apple 的 iOS 更开放的操作系统。Android 的优点在于,它允许贷款人请求权限以抓取用户手机中的大量数据,包括他们的通话记录、短信、通话记录、电子邮件和 GPS 数据。
通过查看某人的手机内容,可以发现有关此人的大量信息,并对其信用度做出准确预测。
发薪日贷款机构可以定制 NeurochainAI 的模型来识别符合其预定贷款标准的消费者,并且它可以在几秒钟内做出决定。此外,该模型旨在随着时间的推移变得更加准确,从其成功和错误中吸取教训。
AI贷款会成为常态吗?
One of the biggest AI payday loan operators is the Germany-based fintech MyBucks, which began its operations in South Africa and now operates in 11 African markets. The company specializes in making loans to previously unbanked individuals that don’t have a credit rating. It offers competitive rates of less than 20% for short-term loans of six months or less, and higher rates of between 25% to 40% for longer durations. Its loans range from as little as $5 to a maximum of $5,000.
Business is going well for MyBucks, which reports that its current loan book stands at over $200 million, with its average loan being $250. It claims to be profitable, with a default rate of around 7% on all of its loans.
Another successful fintech leveraging AI is Branch.co, which has been downloaded more than 40 million times by users in India and Africa. It offers an extensive suite of digital banking services to customers, and it leans heavily on AI. It scrapes data from customer’s smartphones, encrypts that information and then runs machine learning algorithms on it to decide who is, and who isn’t, creditworthy. Having made a decision, it can immediately process successful customers' loan applications, and deposit the funds in their accounts within 10 seconds or less. Like MyBucks, it too has a default rate of around 7%.
Both MyBucks and Branch.co are doing something that wouldn’t be feasible in the U.S., due to its regulations that require an explanation for each loan decision. The overbearing requirements of the U.S. financial system, which are also present in many European countries, prevents payday lenders from utilizing AI to make more intelligent decisions about their loans.
Some western banks are warming up to the idea of AI credit assessments, though, thanks to the pioneering efforts of fintechs like ZestFinance, which has created software that can explain how AI algorithms come to the conclusions they make.
This year, ZestFinance said it has made significant progress, helping lenders assess over 39 million loan applications since it was founded in 2020, resulting in over $250 billion worth of loans being handed out to U.S. consumers. It now counts more than 175 customers nationwide, ranging from small credit unions to the largest banks.
The company doesn’t create AI credit assessment models itself. What it does is provide AI model explainability technology, which essentially reverse-engineers the decisions made by third-party models. It can then generate a report for each AI-processed loan application, and show clearly why it was rejected or approved. Although its most widely used by lenders in the mortgage industry, it’s just as applicable to the payday lending industry.
Conclusion
人工智能可以为发薪日贷款行业带来巨大优势,提高其运营效率,增强风险管理,并大幅加快审批时间。该技术有望使许多传统上由贷款人员执行的任务自动化,这有助于降低与借贷相关的成本,从而降低消费者的利率。
就像任何行业一样,人工智能可能会被不太谨慎的发薪日贷款机构滥用,但抛开这些担忧,人工智能的整合可能带来的好处远多于坏处。通过采用人工智能,发薪日贷款机构可以帮助开创一个更加公平、安全和响应迅速的金融环境。
免责声明:本文仅供参考。本文不提供或意图用作法律、税务、投资、财务或其他建议。